

INTERNSHIP PROPOSAL

Laboratory name: Matériaux et Phénomènes Quantiques

CNRS identification code: UMR 7162

Internship director'surname: Yann Gallais

e-mail: yann.gallais@u-paris.fr

Phone number: 01 57 27 69 89

Web page: <https://mpq.u-paris.fr/squap/>

Internship location: Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75013 Paris

See also: <https://mpq.u-paris.fr/manipulating-unconventional-superconducting-states-via-anisotropic-strain/>

Manipulating unconventional superconducting states via anisotropic strain

Unconventional superconductors are a class of materials where electronic interactions are believed to play a key role in establishing the electron pairing responsible for the superconducting state. Among them the iron-based superconductors (Fe SC) have a rich phase diagram where superconductivity lies nearby, or even coexists, with other electronic ordered phase like anti-ferromagnetism and electron nematicity. A defining feature of Fe SC is the nearby degeneracy of SC ground states which can be distinguished by the symmetry properties of the ground state wave function such as *s*-wave and *d*-wave pairing state [1,2]. In particular, it has been predicted that the balance between SC ground states can be modified using anisotropic strain [3].

The close proximity of symmetry distinct SC states is expected to lead to a novel SC collective mode, predicted more than 60 years ago by Bardasis and Schrieffer (BS) [4]. This mode can be probed by optical spectroscopies such as inelastic Raman light scattering. The BS mode is a unique fingerprint of the energy balance between different SC ground states, and also of exotic SC states like the time-reversal symmetry breaking $s+id$ wave state than can appear near the degeneracy point [5]. In this internship we propose to use uni-axial strain to induce a quantum phase transition between a *s*-wave and a *d*-wave SC ground state in the Fe SC $\text{BaKFe}_2\text{As}_2$. The quantum phase transition will be detected by tracking the evolution of the BS mode using low temperature Raman scattering combined with a piezo-based strain device. The internship is expected to be pursued into a PhD thesis under a collaborative ANR-DFG grant with the group of Anna Böhmer in Bochum (Germany). The 3 year PhD scholarship will be provided by the ANR-DFG grant.

[1] R. Fernandes et al. *Nature*, 601, 35 (2022)

[2] J. C. Philippe et al. *Phys. Rev. Lett.* 129, 187002 (2022)

[3] R. Fernandes and A. Millis, *Phys. Rev. Lett.* 111, 127001 (2013)

[4] A. Bardasis and J. Schrieffer, *Phys. Rev.* 121, 1050 (1961)

[5] Sarkar and Maiti, *Phys. Rev. B* **109**, 094515 (2024)