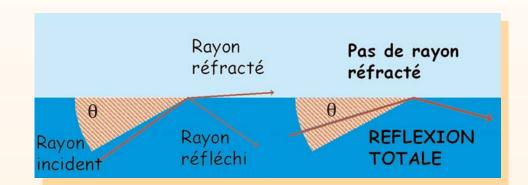
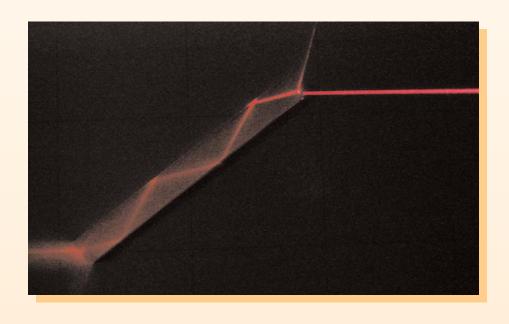

# Un guide pour la lumière : La fibre optique

#### Réfraction, réflexion, réflexion totale

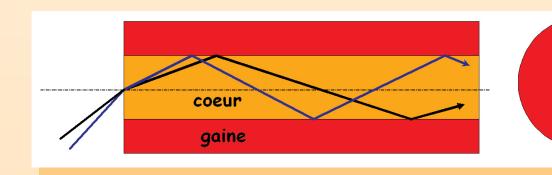

Quand un rayon lumineux passe d'un milieu transparent à un autre, il donne généralement naissance à un rayon **réfracté** (c'est-à dire transmis avec une déviation) et un rayon **réfléchi**.


Dans certains cas (si la lumière se dirige de l'eau vers l'air par exemple), les rayons qui ont une inclinaison suffisamment faible par rapport à la surface de séparation sont totalement réfléchis.

#### De l'air vers l'eau :



#### De l'eau vers l'air :






Faisceau laser dans un aquarium

### Guider la lumière : la fibre optique

Une fibre optique est constituée de 2 tubes concentriques : le cœur et la gaine. Leurs propriétés optiques respectives sont telles que si un rayon lumineux pénètre dans la fibre avec une inclinaison faible par rapport à la direction du tube, il sera totalement réfléchi à l'interface cœur-gaine et se propagera ainsi sans sortir du cœur jusqu'à l'autre extrémité de la fibre.







Saint-Egrève

Taille d'une fibre optique : 10-100 micromètres de diamètre !

## **Applications des fibres optiques**

#### En médecine:

- pour le diagnostic (endoscopie)
- pour le traitement (envoyer un laser intense à l'intérieur du corps pour traiter des tissus).





Et beaucoup d'autres :

fontaines lumineuses, signalisation routière, etc.

# Sassenage Fontaine Seyssinet Pariset Seyssins Claix Pont de Claix Corenc La Tronche Mul Gières St. Martin d'Hères Poisat Eybens Echirolles Claix Dorsale metronet (fibre optique)

Exemple : le réseau <mark>Métronet</mark> à Grenoble









En télécommunication :

réseaux à très haut débit

(plusieurs Gb/s).

Meylan