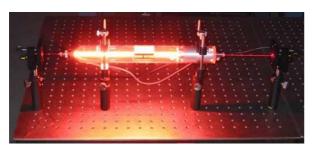


Plate-forme d'Optique

http://physique-eea.ujf-grenoble.fr/intra/Organisation/CESIRE/OPT/

Ateliers expérimentaux sur l'optique

les 23, 24 et 25 août 2011, 14-17h bâtiment C de physique 120 rue de la piscine, campus St Martin d'Hères


A l'occasion de l'école d'été de physique, la plate-forme de travaux pratiques d'Optique de l'Université Joseph Fourier ouvre ses portes pour des démonstrations d'expériences variées, présentées par d'anciens étudiants de sa préparation à l'agrégation de physique, des enseignants et chercheurs de l'Université.

Nous proposons une visite autour de 4 ateliers illustrant le LASER et quelques unes de ses applications. Ces ateliers, d'une durée de 40 minutes chacun, permettent d'aborder des questions très diverses :

Qu'est ce que l'effet laser ? Comment l'utiliser pour transporter de l'information ? Un hologramme, comment ça marche ? Peut-on voir l'invisible ? Pourquoi les lampes à économie d'énergie sont-elles économiques ?

Mr P. Ney, de la société Didaconcept, viendra aussi présenter des expériences de démonstrations, sur le thèse des Rayons X, les énergies renouvelables, ...

Quelques mots sur les différents ateliers prévus :

1. Principe et applications des lasers

Nous ouvrirons le ventre d'un tube LASER à gaz pour montrer d'où sort cette lumière si particulière. Nous verrons ensuite quelques applications pratiques, en particulier au stockage et transport de l'information.

2. Holographie.

Vous avez sans doute déjà entendu parler d'hologrammes, mais savez-vous comment on les fabrique et à quoi ils servent ? Nous tenterons de comprendre comment il est possible d'utiliser les principes de la diffraction et des interférences pour stocker et restituer une image 3D d'un objet.

3. Imagerie, filtrage.

Nous illustrerons des principes basés sur la diffraction, utilisés en microscopie, pour rendre visible un objet transparent ou encore faire apparaître lumineux les contours d'un objet opaque.

4. Spectroscopie, éclairage.

Nous étudierons les spectres de différents types d'éclairage courants, en lien avec leur principe de fonctionnement. Nous mettrons en parallèle la qualité de la lumière produite et leur caractère économe.

